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Abstract

The local spin density approximation plus onsite Coulomb repulsion approach ðLSDAþ UÞ to density functional theory is
carefully reanalyzed. Its possible link to single-particle Green’s function theory is occasionally discussed. A simple and elegant

derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented.

All necessary expressions for an implementation of LSDAþ U into a non-orthogonal basis solver for the Kohn–Sham equations are

given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to

several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure

of the cuprates are drawn.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Density functional theory (DFT) based on the
variational principle by Hohenberg and Kohn [1] has
nowadays a rigorous mathematical basis, mainly due to
work by Lieb [2]. As a theory for (chosen) ground state
properties of a many-particle system, it holds true for
any Coulomb quantum system with arbitrarily strong
correlations in the ground state. All hampering repre-
sentability problems of the early time are gone (see for
instance [3]). However, the central quantity, the
universal density functional is not known, only its
existence can be proved, and we have no fully systematic
access by approximations. Hence, so far (and very likely
also in future) we have to model it and to probe the
models by comparison to phenomenology. This situa-
tion is not principally different from other many-particle
approaches where either models of sufficiently simple
Hamiltonians are used (in quantum field theory) or the
wave function is modeled (for instance in Hartree–Fock
or Gutzwiller approaches).
The situation is even less satisfactory in solid-state

theory, if the focus is on the excitation spectra instead

on the ground state, because in most cases the spectrum
of the many-body Hamiltonian has no separate physical
relevance at all except for its formal use in theoretical
expressions for the partition function. Instead, what is
measured are the spectra of various quasistationary
excitations, defined from few-particle Green’s functions,
the self-energy parts of which, besides being energy-
dependent non-linear integral operators, are also density
functionals.
Although this is not a principal restriction of DFT,

the models in use so far (local (spin) density approxima-
tion, L(S)DA, in the following the acronym LSDA is
used for both LDA and LSDA, generalized gradient
approximation, GGA, LSDA plus self-interaction cor-
rection, SIC, LSDA plus onsite Coulomb repulsion,
LSDAþ U ;y) are subject to the adiabatic approxima-
tion for the electron–lattice interaction.
DFT in the Kohn–Sham (KS) approach to solids

yields a KS band structure, which as such does also not
have a direct physical meaning. Instead, the quasipar-
ticle band structure of Bloch electrons is obtained from
the self-energy of the electron Green’s function. It has
become common use to speak of weak correlations, if in
the vicinity of the Fermi level the LSDA KS potential
and the electron self-energy are not very different. This
does by no means imply that the correlation energy
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itself, defined as the difference between the true total
energy and the Hartree–Fock energy, is small or much
smaller than in strongly correlated systems (where the
LSDA KS potential differs strongly from the electron
self-energy, the latter often jumps as a function of
energy at the Fermi level). It is a general experience that
in the latter cases also the ground state properties, or
certain ground state properties, are much worse
reproduced by the LSDA than in weakly correlated
cases (in the above definition).
This paper deals with strongly correlated systems

treated by means of the LSDAþ U approach. May be
the first precursor of an LSDAþ U calculation (at that
time not fully self-consistent) was the treatment of 4f -
electrons by Herbst et al. [4]. A first fully self-consistent
calculation of values of the Hubbard U was performed
by Dederichs et al. [5] for the 4f -states of Ce by applying
the Korringa–Kohn–Rostoker solver of the KS equa-
tions to a constraint impurity problem. An early similar
approach to U for NiO by Norman and Freeman [6]
used the augmented plane wave (APW) solver in a
super-cell formulation. For the further development of
this subject see [7].
Pickett and Wang [8] and Hybertsen and Louie [9]

based the so-called GW-approximation for the electron
self-energy of semi-conductors and insulators on LDA
results for the density and KS bands as a starting
approximation for the GW-approach. In these cases the
main difference between the LDA KS potential and the
self-energy is a jump of the latter, constant in r-space at
the Fermi level [10] (scissors operation). This is still
considered a weakly correlated case, but these were the
first estimates of the self-energy of an inhomogeneous
situation as a density functional.
A systematic incorporation of the Hubbard U-

potential into the DFT model functionals started with
two papers by Anisimov et al. [11,12]. While it was
proposed in [11] to model the total spin dependence by
the U-functional and to treat the spin-independent
functional by the LDA, in [12] the orbital polarization
part (m-dependent occupation of local orbitals) was
treated by the U-functional and the isotropic (in r-
space) part of the spin density was treated in LSDA.
This has the advantage that spin polarization effects can
be treated more generally, not only in the strongly
correlated orbitals. However, this version, later on
called ‘around the mean field’, AMF, by Czy’zyk and
Sawatzky [13], gives nearly nothing for a half-filled fully
spin polarized shell as in Mn2þ or in Gd. Therefore,
aiming mainly at reproducing the photoemission spectra
(which essentially means modeling the electron self-
energy rather than the KS potential), an alternative U-
functional was introduced in [13] and called the ‘atomic
limit’ version, AL. This version which roughly shifts
unoccupied orbital energies upward by U=2 and
occupied orbital energies downward by U=2 indepen-

dent of the shell filling (even for filled and empty shells),
has been widely used since. For a survey see [14].
It has to be confessed that all LSDAþ U models up

to now depend on the basis used for the KS solver. Most
results are obtained so far with an linearized muffin tin
orbital (LMTO) implementation. For a recent APW
implementation see [15].
In this paper, in Section 2, a full-potential local-

orbital (FPLO) implementation is described. FPLO [16]
is a high precision high efficiency KS solver which uses a
minimum basis (and hence is fast) containing only local
basis functions which are optimized in both a numerical
and chemical sense. (It competes in accuracy with well
converged full-potential APW.) After a short outline
how U is integrated into DFT, the correlated orbitals
used in the FPLO implementation are introduced. Since
literature statements [13] say that the most important
sum rules for the interaction matrix elements (screened
Slater integrals) of those orbitals are cumbersome to
verify, a very simple and elegant derivation is given here.
After the necessary analysis of the orbital occupation
matrix for the non-orthogonal basis of FPLO and the
introduction of the AMF and AL functionals in the
FPLO implementation, explicit expressions for the U-
potential and for the total energy are given as they are
coded in FPLO LSDAþ U : In Section 3, new applica-
tions to cuprate structures, the ‘infinite layer’ compound
CaCuO2; the undoped single-layer compound
Sr2CuO2Cl2 and the bilayer high-temperature super-
conductor Bi2Sr2CaCu2O8 are considered and the
results are compared to both magnetic ground state
properties and photoemission spectra. A short summary
is given in Section 4.

2. The FPLO implementation of the LSDA+U approach

The underlying frame of the LSDAþ U approach is
the Hohenberg–Kohn variational principle,

E½v̌;N� ¼ min
ň

H½ň � þ
X
ss0

Z
d3r vss0 ðrÞns0sðrÞ

�����
(

X
s

Z
d3r nssðrÞ ¼ N

)
ð1Þ

for the ground state energy E and spin density ň ¼ ðnss0 Þ
of N electrons in an external spin-dependent potential v̌;X
ss0

Z
d3r vss0 ðrÞns0sðrÞ ¼

Z
d3r ðvn 	 B 
 mÞ; ð2Þ

which holds true in any case of arbitrarily strong
correlation. It is based on many-particle quantum
theory by rigorous mathematics [3]. Of course, the
density functional H½ň � is unknown.
The generalized Kohn–Sham modeling of this func-

tional is by parameterizing the variational spin density
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by new variational parameters: the Kohn–Sham orbitals
fiðr; sÞ and orbital occupation numbers ni;

nss0 ðrÞ ¼
X

i

fiðrsÞnif
�
i ðrs0Þ; /fijfjS ¼ dij ;

0pnip1;
X

i

ni ¼ N; ð3Þ

and by splitting the density functional into an orbital
variation expression K ½ň � and a (possibly generalized by
gradient terms) local density expression L½ň �:
H½ň � ¼ K ½ň � þ L½ň �;

K ½ň � ¼ min
ffi ;nig

k½fi; ni�
X

i

finif
�
i ¼ ň

�����
( )

;

L½ň � ¼
Z
d3r nðrÞlðnss0 ðrÞ;=n;yÞ: ð4Þ

This puts the Hohenberg–Kohn variational principle
into the Kohn–Sham form

E½v̌;N� ¼ min
ffi ;nig

k½fi; ni� þ L
X

i

finif
�
i

" #(

þ
X

i

ni/fijv̌jfiS

�����
/fijfjS ¼ dij ; 0pnip1;

X
i

ni ¼ N

)
: ð5Þ

While for the L-functional LSDA or GGA models are in
use, k is modeled by LSDA or LSDA+SIC or LSDAþ
U : Variation of f�

i yields the generalized Kohn–Sham
equation,

1

ni

dk

df� þ ðv̌L þ v̌Þfi ¼ fiei; vL
ss0 ¼

dL

dns0s
; ð6Þ

and variation of the ni yields the common aufbau
principle which holds true for all model variants within
this frame and which says that the ground state density
is obtained by occupying the N orbitals with the lowest
ei:
The variants of the LSDAþ U model correspond to

k ¼ t þ eH þ eU ;

t þ eH ¼
X

i

ni/fijt̂ jfiS

þ 1

2

X
ij

ninj/fifjjr	1ij jfifjS; ð7Þ

where eU is expressed through projection onto corre-
lated local orbitals jRmsÞ centered at site (or in the unit
cell) R and with orbital and spin quantum numbers m
and s: The projection is given by a local orbital
occupation number ñms which depends on the varia-
tional quantities fi; ni:

eU ¼ eUðñms½fi; ni�Þ;
1

ni

d
df�

i

eU ¼
X
Rms

@eU

@ñms

1

ni

dñms

df�
i

: ð8Þ

The functional derivative on the r.h.s. of the last
expression yields the projection while the partial
derivative defines the orbital and spin-dependent
U-potential: vU

ms ¼ @eU=@ñms: It is crucial for fitting
the models in use into the general Hohenberg–Kohn–
Sham frame that the correlated orbitals themselves
as well as the actual value of U are understood fixed
and not variational although they may be context
dependent. They may be thought of defining a
location, relevant in a given context, in the variational
functional space and a functional contribution from that
location.

2.1. Correlated orbitals

In the so-called rotationally invariant LSDAþ U

approach the correlated local orbitals are assumed to be
angular momentum eigenstates centered at R; say, with
predefined orbital and spin momentum quantization
axes (which both need not be the same)

jRimisiÞ; mi ¼ 	li;y; li; si ¼ m;k: ð9Þ

Only one-site matrix elements, R1 ¼ R2 ¼ R3 ¼ R4; are
considered:

ðm1m2jw̃jm3m4Þ; w̃Ew̃ðjr 	 r0jÞ; s1 ¼ s3;

s2 ¼ s4: ð10Þ

The rotational invariance refers to the screened elec-
tron–electron interaction, w̃; which is of course an
approximation as regards the screening. As a conse-
quence, the SO3 transformation properties of the matrix
elements are

ðm1m2jw̃jm3m4Þ

¼
X

m0
1m0

2m0
3m0

4

Uw
m1m0

1
ðÔÞUw

m2m0
2
ðÔÞ

� ðm0
1m

0
2jw̃jm0

3m
0
4ÞUm0

3m3
ðÔÞUm0

4m4
ðÔÞ; ð11Þ

where Ô is any rotation of the r-space and the U-
matrices (not to be confused with the Coulomb integral
U) yield the relevant SO3 representation:

UwðÔÞUðÔÞ ¼ 1 ¼ UðÔÞUwðÔÞ;
Z
dÔ Um1m2ðÔÞUw

m3m4
ðÔÞ ¼ 1

2l þ 1 dm1m4dm2m3 : ð12Þ

In the last orthogonality relation, dÔ is Haar’s measure
of the SO3;

R
dÔ ¼ 1:

These fundamental representation properties allow
for a very simple and elegant derivation of the important
sum rules for the matrix elements: Use unitarity of U
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and integrate over dÔ to obtainX
m1

ðm1m2jw̃jm1m4Þ

¼
X
m1

X
m0
1m0

2m0
3m0

4

Uw
m1m0

1
ðÔÞUw

m2m0
2
ðÔÞðm0

1m
0
2jw̃jm0

3m
0
4Þ


 Um0
3m1

ðÔÞUm0
4m4

ðÔÞ
¼

X
m0
1m0

2m0
3m0

4

dm0
1m0

3
Uw

m2m0
2
ðÔÞðm0

1m
0
2jw̃jm0

3m
0
4ÞUm0

4m4
ðÔÞ

¼ 1

2l þ 1
X

m0
1m0

2m0
4

ðm0
1m

0
2jw̃jm0

1m
0
4Þdm2m4dm0

2m0
4

¼ dm2m4

2l þ 1
X

m0
1m0

2

ðm0
1m

0
2jw̃jm0

1m
0
2Þ

¼ dm2m4ð2l þ 1ÞU : ð13Þ

The last equation is the definition of the Coulomb
integral U : In the same manner,X

m1

ðm1m2jw̃jm3m1Þ

¼ dm2m3

2l þ 1
X

m0
1m0

2

ðm0
1m

0
2jw̃jm0

2m
0
1Þ

¼ dm2m3ðU þ 2lJÞ ð14Þ

is obtained which additionally defines the exchange
integral J: The first result (13) is intuitively obvious:
after summation over m1 and integration over r in the
matrix element, no angular dependence with respect to r0

is left except the orthogonality ðm2jm4Þ ¼ dm2m4 : The
second result (14) is less obvious but nevertheless true.
Expansion of the interaction function into spherical

harmonics,

w̃ðjr1 	 r2jÞ ¼ w̃ððr21 þ r22 	 2r1r2 cos yÞ
1=2Þ

¼
XN
l¼0

w̃lðr1; r2ÞPlðcos yÞ

¼
XN
l¼0

w̃lðr1; r2Þ
4p
2l þ 1

�
Xl

m¼	l

Ylmð#r1ÞY �
lmð#r2Þ ð15Þ

leads to Slater’s analysis

ðm1m2jw̃jm3m4Þ ¼
X2li
l¼0

F̃lalðm1m2m3m4Þ;

F̃l ¼
Z Z

N

0

dr1dr2 ðr1Riðr1ÞÞ2ðr2Riðr2ÞÞ2w̃lðr1; r2Þ

E
Z Z

N

0

dr1dr2 ðr1Riðr1ÞÞ2ðr2Riðr2ÞÞ2
rl
o

rlþ1
4

for l40; ð16Þ

alðm1m2m3m4Þ ¼
4p
2l þ 1

Xl

m¼	l

ðYlim1 jYlmjYlim3Þ

� ðYlim4 jYlmjYlim2Þ
�:

Here, li is the angular momentum of the considered
shell, and the second line for F̃l holds for the unscreened
Coulomb interaction which for l40 is a reasonable
approximation since intraatomic screening is effective
only for the s-component of the interaction.
Now, from

P
m YlmðrÞY �

lmðrÞ ¼ Plð1Þð2l þ 1Þ=4p andX
m1

alðm1m2m1m2Þ

¼ 4p
2l þ 1

X
m1

ðYlim1 jYl0jYlim1Þ
" #

ðYlim2 jYl0jYlim2Þ
�

¼
ffiffiffiffiffiffi
4p

p 2li þ 1
2l þ 1 dl0ðYlim2 jYl0jYlim2Þ

� ¼ ð2li þ 1Þdl0

it follows immediately that

U ¼ F̃0: ð17Þ

Furthermore,X
m1m2

alðm1m2m2m1Þ

¼ 4p
2l þ 1

X
m1m2

m

ðYlim1 jYlmjYlim2ÞðYlim2 jY
�
lmjYlim1Þ

¼ 4p
2l þ 1

Z Z
dO1 dO2

X
m1

Ylim1ðr2ÞY
�
lim1

ðr1Þ
 !

�
X
m2

Ylim2ðr1ÞY
�
lim2

ðr2Þ
 ! X

m

Ylmðr1ÞY �
lmðr2Þ

 !

¼ ð2li þ 1Þ2

ð4pÞ2
Z Z

dO1 dO2 ½Pliðcos y12Þ�
2
Plðcos y12Þ

¼ ð2li þ 1Þ2

4p

Z
dO ½Pliðcos yÞ�

2
Plðcos yÞ

¼ ð2li þ 1Þ2
li l li

0 0 0

 �2

and hence

X
m1m2

ðm1m2jw̃jm2m1Þ ¼ ð2li þ 1Þ2
X2li
l¼0

F̃l

li l li

0 0 0

 �2

¼ð2li þ 1ÞðU þ 2liJÞ: ð18Þ

Eqs. (17) and (18) relate the Coulomb and exchange
integrals U and J to Slater’s (screened) integrals F̃l :
Recall, however, that the whole analysis presupposes

the isotropy of screening which could be questioned at
least in cases of strong directional covalency.

ARTICLE IN PRESS
H. Eschrig et al. / Journal of Solid State Chemistry 176 (2003) 482–495 485



2.2. The orbital occupation matrix

The variants of the LSDAþ U model are all
depending on the basis set of the solver of the Kohn–
Sham equations. There are a few subtleties in this game
which never have been discussed in the literature. Here,
a non-orthogonal local basis implementation [16] of the
solver will be used, since a local orbital representation is
mandatory for considering strong correlations. Non-
orthogonality of the basis is rather the rule than the
exception for high precision solvers. For an LMTO
solver see [17], for an LAPW solver see [15].
Consider Kohn–Sham orbitals jkS ¼ jfkS and orbi-

tal occupation numbers nk as previously; they need not
be eigenstates of spin. Let fjlÞg be a possibly non-
orthogonal basis for Kohn–Sham orbitals: jkS ¼P

l jlÞclk;Sll0 ¼ ðljl0Þ: (Systematically, brackets are used
for the Kohn–Sham orbitals and parentheses for the
local basis orbitals.) For an orthogonal projection onto
those basis orbitals the contragradient basis jlg ¼P

l0 jl0ÞðS	1Þl0l ; fljl0Þ ¼ dll0 is needed. With its help, the
occupation matrix ñ ¼ ñ½fk; nk� of correlated orbitals
jmsÞ at site R in an orthogonal form is introduced as

ñmm0s ¼
X

k

X
ll0

ðS	1ÞðRmsÞ;lðljkSnk/kjl0ÞðS	1Þl0;ðRm0sÞ

¼
X

k

cðRmsÞ;knkc�ðRm0sÞ;k: ð19Þ

As usually it is assumed that the spin dependence can be
made site diagonal by choosing a suitable spin
quantization axis. The orbital occupation matrix may
be diagonalized with respect to m;m0 at each lattice site
R and for each spin value s independently:

ñmm0s ¼ ŨðsÞ
mms

ñmsŨ
ðsÞ�
m0ms

: ð20Þ

Averages over a correlated shell of angular
momentum l;

ñs ¼
1

2l þ 1
X
m

ñms; ñ ¼ 1
2
ðñm þ ñkÞ; ð21Þ

are used later on.
The projector in (8) is now

1

nk

dñms

d/kj ¼
X

ll0
jl0ÞðS	1Þl0;ðRmsÞðS	1ÞðRmsÞ;lðljkS: ð22Þ

Naturally, in applications the correlated orbitals are
assumed to form a subset of the basis orbitals, although
this is not mandatory. In the FPLO scheme, the basis is
adjusted in the course of iterations for solving the non-
linear Kohn–Sham equations. This does not mean that
the basis itself is treated as variational. Rather the
relevant sector of the variational space is tracked along
the way of search for the Kohn–Sham minimum.
Likewise, the relevant location of correlation, that is
the correlated orbitals as part of the basis, is tracked
along.

2.3. The orbital polarization LSDAþ U functional

This functional was introduced under the name
‘around the mean field’ (AMF) in Ref. [13]. It is zero
if the orbitals of an atomic shell are equally occupied,
hence it depends on orbital polarization. It is given by

lðnss0 ðrÞ;yÞ ¼ lLSDA;

eU ;AMF ¼ 1
2

X
Rsmm0

fðmsm0	sjw̃jmsm0	sÞðñms 	 ñsÞðñm0	s 	 ñ	sÞ

þ ½ðmsm0sjw̃jmsm0sÞ 	 ðmsm0sjw̃jm0smsÞ�
� ðñms 	 ñsÞðñm0s 	 ñsÞg

¼ 1
2

X
Rsmm0

fðmsm0	sjw̃jmsm0	sÞñmsñm0	s

þ ½ðmsm0sjw̃jmsm0sÞ 	 ðmsm0sjw̃jm0smsÞ�ñmsñmsg

	 1

2

X
Rs

fUðN 	 ñsÞ 	 JðNs 	 ñsÞgNs; ð23Þ

Ns ¼
X
m

ñms ¼ ð2l þ 1Þñs:

In the second equality, use of the sum rules ((13), (14)) is
made. N is the number of electrons occupying a whole
correlated l-shell, Ns is that for one spin sort. There is
no danger of confusing it with the total electron number
in Eqs. (1)–(5), the latter does not appear any more in
the sequel.
The corresponding U-potential is, again most easily

with use of the sum rules,

@eU ;AMF

@ñms
¼
X
m0

fðmsm0	sjw̃jmsm0	sÞðñm0	s 	 ñ	sÞ

þ ½ðmsm0sjw̃jmsm0sÞ 	 ðmsm0sjw̃jm0smsÞ�
� ðñm0s 	 ñsÞg: ð24Þ

One weak point of this version is that it yields no
contribution at all in case of orbital-independent
occupation numbers ñm0s ¼ ñs: This is, for instance,
the case of a half-filled completely spin polarized shell
(e.g. 4f -shell of Gd). In the Gd case this is at least not
too bad, as the LSDA gives nearly the right spin
polarization energy of Gd, although there is a problem
with the right magnetic ground state (obtained anti-
ferromagnetic in LSDA).

2.4. The ‘atomic limit’ LSDAþ U functional

With the Gd case in mind and aiming at a better
description of the photoelectron spectra, Czy’zyk and
Sawatzky introduced another functional in [13] which
they labeled ‘atomic limit’ (AL). At least regarding its
relation to photoemission it should rather be considered
a model for the quasiparticle self-energy S instead
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of being related to eU : Nevertheless, it was given in an
eU -form as (again lðnss0 ðrÞ;yÞ ¼ lLSDA)

eU ;AL ¼ 1
2

X
Rsmm0

fðmsm0	sjw̃jmsm0	sÞñmsñm0	s

þ ½ðmsm0sjw̃jmsm0sÞ 	 ðmsm0sjw̃jm0smsÞ�ñmsñmsg

	 1

2

X
R

UNðN 	 1Þ 	 J
X
s

NsðNs 	 1Þ
( )

¼ eU ;AMF þ 1
2

X
Rs

ðU 	 JÞð1	 ñsÞNs: ð25Þ

The corresponding U-potential is

@eU ;AL

@ñms
¼ @eU ;AMF

@ñms
	 ðU 	 JÞ ñs 	

1

2

 �
: ð26Þ

One characteristic feature of this U-potential is that in
case of an isolated shell it moves the occupied states
downward by ðU 	 JÞ=2 and the unoccupied states
upward by ðU 	 JÞ=2 independent of the shell occupa-
tion. By way of contrast, the center of the AMF spin
subshell potential split moves up with increasing sub-
shell occupation (so that the shift of the occupied levels
is zero in the case of a filled spin subshell and likewise
the shift of the unoccupied levels of an empty spin
subshell; this way yielding no shift at all in Gd). On the
other hand, the AL 4f -level splitting of Gd is
approximately doubled compared to LSDA which is
a rather good result in the sense of a self-energy
correction.

2.5. The Kohn–Sham Hamiltonian matrix element and

the total energy

Here the formulas are presented, which actually are
implemented. For the sake of simplicity, the correlated
orbitals are identified with selected local basis orbitals as
discussed at the beginning of Section 2.2. The diagona-
lization of the occupation matrix, although greatly
simplifying the analytical derivations, does not have
advantages when coded, since the diagonalizing trans-
formation is site and spin dependent. Therefore, the full
occupation matrix ñmm0s is kept. (In the following, the
site index of all quantities is dropped. If multiple sites
with correlated states are needed, the formulas apply
to all sites separately.) The matrix is obtained from the
KS states:

ñmm0s ¼
X
nk

cnk
msnnkscnk�

m0s: ð27Þ

Integration is over the irreducible part of the Brillouin
zone and a symmetrization projector is applied after-
wards to get the result for the full zone.

The AMF U-potential matrix as given in the text after
Eq. (8) becomes

vAMFm0ms ¼
X
s0

X
mm0

ðñmm0s0 	 ñs0dmm0 Þ

� ½ðm0m0jw̃jmmÞ 	 dss0 ðm0m0jw̃jmmÞ� ð28Þ

with the property Tr vAMFmm0s � 0 for each s separately. (Tr
means the trace of the ðm;m0Þ-matrix; it vanishes due to
the sum rules (13), (14).) There is no such property of
the AL potential since here the up and down shifts are
independent of the shell occupation. The interaction
matrix elements are taken to be spin independent. They
are calculated from the Slater parameters according to
Eq. (16). (Recall that the F̃i are external parameters, not
variational.)
The projection part of Eq. (8) gives only Kronecker

deltas. Thus the matrix elements of the KS equation are
modified by vAMFmm0s for every block of correlated orbitals.
The eigenvalue sum over the occupied bands yields the
band structure energy EB: The kinetic energy is obtained
from it by subtracting the expectation values of all
potentials entering the KS equation. Besides the LSDA
like expressions a term

VAMF ¼
X
mm0s

vAMFm0msñmm0s ð29Þ

is to be subtracted. Here, capitals E;V denote total
energy contributions corresponding to the solution of
the KS equations. E without superscript is the l.h.s. of
Eq. (5). Since the AMF-potential matrix is traceless, a
constant diagonal term may be added to the occupation
matrix to obtain from (28) and (23)

VAMF ¼
X
mm0s

vAMFm0msðñmm0s 	 ñsdmm0 Þ ¼ 2EU ;AMF: ð30Þ

(EU ;AMF is the value of (23) for the occupation matrix
corresponding to the KS solution.) Finally, the LSDAþ
U ; kinetic and total energy are

T ¼ EB 	 VLSDA 	 2EU ;AMF; ð31Þ

E ¼ ELSDA 	 EU ;AMF; ð32Þ

where VLSDA and ELSDA (the latter expressed through
EB) mean the formula expressions of the LSDA
calculated with the LSDAþ U KS orbitals and (in the
case of EB) with the LSDAþ U KS band energies.
The UAL-potential matrix may be written as

vAMFm0ms ¼
X
s0

X
mm0

ñmm0s0 ½ðm0m0jw̃jmmÞ 	 dss0 ðm0m0jw̃jmmÞ�

	 vdcs dmm0 ð33Þ

with

vdcs ¼ UðN 	 1
2
Þ 	 JðNs 	

1

2
Þ: ð34Þ

Again, every block belonging to a correlated orbital
in the Hamilton matrix is modified by adding vALmm0s:
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A somewhat more involved algebra yields

VAL �
X
mm0s

vALm0msñmm0s ¼ 2EU ;AL 	 U 	 J

2
N: ð35Þ

Thus, the final result is

T ¼ EB 	 VLSDA 	 2EU ;AL þ U 	 J

2
N; ð36Þ

E ¼ ELSDA 	 EU ;AL þ U 	 J

2
N: ð37Þ

3. Applications to cuprates

The structure of the 2D cuprates considered here may
be described by the formula BðCuO2ÞnCan	1; where B
denotes the block layer which separates stacks of n

CuO2-planes with Ca planes sandwiched in between.
The LSDAþ U approach was applied to three

compounds (CaCuO2 ðn ¼ NÞ; Sr2CuO2Cl2 ðn ¼ 1Þ
and Bi2Sr2CaCu2O8 ðn ¼ 2Þ) with the focus on the
orbital analysis of relevant bands. While the band
structure gap between occupied and unoccupied bands is
a ground state property (jump of the chemical potential
as function of the particle number at zero temperature),
the whole band structure refers to the excitation
spectrum, and the KS band structure need not compare
to photoemission, say. Nevertheless, although there is
no deeper reason that the best LSDAþ U potential for
the KS equations should be close to the electron self-
energy, there is some hope that like for weakly
correlated systems the LSDAþ U band structure could
again provide also an approximation to the quasi-
particle spectrum. One should, however, be aware that
in principle the best KS U-value need not be the same as
the best U-value in Hubbard-type model Hamiltonians.
The latter value should for instance be used in
dynamical mean-field theory which is an approach to
the electron Green’s function (self-energy). A satisfac-
tory link of the U-value to the KS variational quantities,
the KS orbitals and KS orbital occupation numbers, is
still missing. For LSDAþ U as a Hohenberg–Kohn
model the most relevant results are ground state
properties as structural parameters (lattice constants,
Wyckoff parameters), magnetic structure and magnetic
polarization energy and band gap. The lattice para-
meters for the cuprates are obtained in the usual72 p.c.
agreement with experiment. They will not be considered
in the following.
The FPLO version used is 3.00–5 [18]. Here, the

program settings are summarized, which are unique to
all calculations. The LSDA version is that of Perdew
and Zunger [19]. The Cu 3d orbitals are taken to be the
correlated orbitals. For the sake of comparison, the
same Slater parameters were used for all calculations:
U ¼ 8:16 eV (0.3 hartree), J ¼ 1 eV (F2 ¼ 9 eV;

F4 ¼ 5 eV). The orbitals were optimized in the non-
magnetic structures and the resulting compression radii
were used also for the antiferromagnetic (AFM) LSDA-
U calculations. Unless explicitly else stated the ‘‘around
mean field’’ (AMF) functional is used.

3.1. CaCuO2

The ‘infinite layer’ cuprate CaCuO2 (no block layer B)
does not exist in nature, but there is an isostructural
compound Ca0:85Sr0:15CuO2: It is considered here first
because the bands of this infinite cuprate stack are not
perturbed by hybridization with block layer states and
hence in this sense are pure. The experimental lattice
parameters of Ca0:85Sr0:15CuO2 [20] are taken for the
fictitious CaCuO2: The antiferromagnetic unit cell is
shown in Fig. 1. The space group is I4=mmm (139). The
distance along Cu–O–Cu is da ¼ 3:86 Å and the distance
in z-direction between adjacent CuO2 layers is dc ¼
3:20 Å: (For all compounds considered here da is the
lattice constant of the non-magnetic cuprate plane, while
dc is the distance in z-direction between adjacent cuprate
multilayers ½ðCuO2ÞnCan	1�: For CaCuO2 it is the CuO2
plane distance. It also gives the periodicity of the
multilayers in z-direction, ignoring a centering shift
perpendicular to the z-direction.)
The AFM lattice constants are a0 ¼ b0 ¼

ffiffiffi
2

p
da; c0 ¼

2dc: The atom positions are Ca ð0; 1
2
; 1
4
Þ; Cu ð0; 0; 0Þ; Cu

ð0; 0; 1
2
Þ and O ð1

4
; 1
4
; 0Þ: Table 1 gives the FPLO basis set.
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Fig. 1. Unit cell of antiferromagnetic CaCuO2; Cu2 spin up, Cu3 spin

down.

Table 1

Basis set for CaCuO2

Atom Core Valence

Ca 1s 2s 2p 3sð	1Þ 3pð	1Þ 4sð1:1240Þ
4pð1:0927Þ 3dð	1Þ

Cu 1s 2s 2p 3sð	1Þ 3pð	1Þ 4sð1:3148Þ
4pð1:2648Þ 3dð1:3500Þ

O 1s 2sð1:2869Þ 2pð1:2822Þ 3dð	1Þ

Compression parameter for valence orbitals in parentheses.
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The number of Fourier components was 1024 per atom
and the k-mesh subdivision was ð6; 6; 6Þ:Non-relativistic
calculations were performed.
The symmetry points of the band structures presented

below refer to the Brillouin zone of the antiferromag-
netic cuprate plane (a square of edge length 2p=ð

ffiffiffi
2

p
daÞ).

For better comparison to the literature we relate it to the
non-magnetic Brillouin zone which is a rotated by 45�

square of edge length 2p=da: In units of p=da we have
G; ðZÞ ¼ ð0; 0; zÞ; X ; ðRÞ ¼ ð1

2
; 1
2
; zÞ and M; ðAÞ ¼

ð1; 0; zÞ: The first labels refer to z ¼ 0 and the labels in
parentheses refer to z ¼ 1 ¼̂ p=dc: ((0,0,1) is the Z point
of a simple tetragonal cell of lattice constant c ¼ dc:)
Calculations within LSDA and LSDAþ U were

performed. As usual for the cuprates, the LSDA gives
a metallic ground state. The KS band structure is shown
in Fig. 3. The spaghetti below the Fermi level (here and
in all following figures put equal to zero) consists of
hybridized Cu-3d and O-2p states, with the bonding
combinations at the bottom and the antibonding bands
formed of the orbitals of Fig. 2 crossing the Fermi level.
Non-bonding combinations are in between. The un-
occupied bands above the Fermi level start with Cu-4s
and Cu-4p character and then enter a bunch of Ca-3d
bands above 5 eV:
The same bands weighted (by linewidth) with the

square of the coefficient of selected basis orbitals in the
KS state are shown in Fig. 4. Bands not seen on these
panels have a negligible contribution from the corre-
sponding orbital. From the upper two panels one can
read off a ðCu2OÞs covalency split of more than 5 eV
while the third panel shows a (O–O) covalency split of
about 3 eV: One further observes that the Os orbitals
and the Oz orbitals hybridize also with the Cu 4s and 4p
orbitals while the in-plane Op orbitals hybridize
additionally with the Ca 3d orbitals (not shown). Figs.
3 and 4 are presented here for comparison with the
LSDAþ U results shown below.
Experimentally, ðCa0:85Sr0:15ÞCuO2 is an AFM in-

sulator with a band gap of more than 1 eV and a Néel

temperature TNE540 K: The U-functional cures this
deficiency and one finds an AFM solution with a spin
polarization energy DE ¼ 27:9 mhartree per formula
unit below the Pauli-paramagnetic (PM) state. The site
projected copper 3d moment is 0:71mB and the total
copper spin moment is 0:69mB (reduced by negative 3s3p
moments).
The already discussed two relevant molecular orbitals

(MO) of Fig. 2 are the candidates for the highest
occupied molecular orbital (HOMO) in the correlated
electronic structure of cuprates, that is, those MOs
which are relevant for the valence band edge. The
LSDAþ U KS bands of CaCuO2 with the AMF and
AL functionals are shown in Fig. 5. The main difference
between both functionals is found in the unoccupied
bands. As to be expected for a more than half-filled
shell, the upper Hubbard band of (Cu-3dx2	y2 and O-2ps

character, see below) lies higher in the AMF case
compared to AL. In AL this band is the lowest
unoccupied band. In the occupied part near the Fermi
level the differences are small, while far below larger
differences are found due to the different position of the
lower Hubbard band and thus to different hybridiza-
tion. Since this paper focuses on the occupied bands
near the Fermi level, the differences are not very
relevant, and all further results are presented for the
AMF functional.
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Fig. 2. Left: Antibonding ðk ¼ ðp;p; 0ÞÞ dps-orbital commonly assumed as the HOMO that forms the Zhang–Rice singlet together with the nominal
Cu-d hole [21,22]. Right: O–O antibonding ðk ¼ 0Þ in-plane pp-orbital, lifted up by crystal field and weakly hybridized with Ca-d orbitals in adjacent
layers: the true HOMO of the LSDAþ U model [23,24].
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Fig. 3. LSDA band structure of CaCuO2:

H. Eschrig et al. / Journal of Solid State Chemistry 176 (2003) 482–495 489



Recall that all density functionals in practical use are
model functionals. Hence, with respect to the physical
relevance of the presented results, two independent
issues are to be addressed. The first is, given a model
functional like LSDA, or LSDAþ U in the AMF or AL
variants, what is the numerical accuracy of the solution
for the corresponding KS bands and for the total energy
of that model. This has been carefully analyzed to be in
the ten meV range for the occupied bands and better
than a tenth of an eV for the lowest unoccupied bands.
(The error due to basis incompleteness increases with
increasing band energy.) This numerical accuracy is by
far sufficient for addressing the second issue: How does

the model compare to quantum mechanics, that is, to
experiment. Here, the answer is a phenomenological
one, in the present case saying that the LSDAþ U does
much better than the LSDA both with respect to the
excitation gap and to the polarization of the ground
state. Hence, other details of the LSDAþ U results can
also be considered with more confidence than the
corresponding LSDA results.
In Fig. 6 the orbital weights to the AMF bands in

analogy to Fig. 4 is shown. First, it is clearly seen that
the upper and lower Hubbard band is formed by
Cu-3dx2	y2 and O-2ps orbitals. At the valence band edge
(points X and R shown, but without noticeable
dispersion on the whole line X–R in z-direction of the
k-space) O-2ps and O-2pp contribute equally strongly
while the Cu-3dx2	y2 orbital contribution is largely
suppressed compared to the LSDA result. This suppres-
sion of the Cu contribution to valence holes in cuprates
is confirmed by experiment [25]. The O-2pp contribution
on the other hand is strongly enhanced compared to
LSDA, a new result which is missed in most model
Hamiltonian treatments in the literature where the
O-2pp degree of freedom is excluded from the Hamilto-
nian in most cases. Other orbitals do not contribute.
Hence, on the line X–R the highest occupied band is
mainly a hybrid of O-2ps and O-2pp: These band states
are assumed to form the Zhang–Rice singlet with the
nominal 3d-hole on the Cu site (upper Hubbard state)
[22]. The bandwidth of the highest valence band is about
1 eV due to hybridization with a flat band 1 eV below
the Fermi level. On the line X–M (R–A) the O-2ps
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Fig. 4. LSDA result for CaCuO2: From top: orbital weight of the

Cu-3dx2	y2 orbital, the O-2ps orbitals, the O-2pp and the O-2pz

orbitals.
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Fig. 5. LSDAþ U band structure of CaCuO2: Top: AMF, bottom:

AL.
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contribution fades away towards M (A) due to this
hybridization. In LSDA the O-2pp orbitals do practi-
cally not contribute to this band which led to the neglect
of that orbital in model Hamiltonians. This failure of
the LSDA is mainly due to the fact that in LSDA the
O-2pp bands are deeper in energy compared to the
Cu-3dx2	y2–O-2ps bands.
The absolutely highest occupied band in the LSDAþ

U result is a pure O-2pp band (at G) which therefore is in
energetic competition with the Zhang–Rice state when
adding additional holes. The O-2pp bands show a

considerable dispersion in z-direction which comes from
a weak hybridization with the unoccupied Ca-3dx2	y2

orbitals. The Cu 4s orbitals do not contribute at the
valence band edge. They are mixed into the unoccupied
states and are also slightly mixed into O-2ps states about
1:5 eV below the Fermi level on the line M–A.

3.2. Sr2CuO2Cl2

The single-layer compound Sr2CuO2Cl2 is probably
the most two-dimensional of all cuprates. The block
layer consists of 2 SrCl layers which separate single
CuO2 planes. Between these SrCl layers crystals are
easily cleaved, whence most photoemission data on
undoped planar cuprates are recorded from this
material. Two adjacent cuprate planes are shifted
horizontally by a shift vector ð1

2
; 1
2
; 0Þ relative to each

other, which produces a body centered non-magnetic
unit cell. The large distance of cuprate planes from each
other prevents valence state coupling in z-direction. The
AFM cell has base centered orthorhombic symmetry
and is shown in Fig. 7.
The standard cell choice for the orthorhombic cell,

which has also to be used in the FPLO code results in c-
base centering. (The stacking direction is the b-direction
and the cuprate plane is the c;a plane.) The space group
is Cmmm (65). The cell parameters are da ¼ 3:973 Å and
2dc ¼ 15:618 Å [26]. The lattice constants of the AFM
cell are a0 ¼ c0 ¼

ffiffiffi
2

p
da; b0 ¼ 2dc: The atom positions

are Cu ð0; 1
2
; 1
2
Þ; Cu ð0; 0; 0Þ; O ð	1

4
; 0;	1

4
Þ; Cl

ð0;	0:317; 1
2
Þ; Cl ð0; 0:183; 0Þ; Sr ð0;	0:107; 1

2
Þ and Sr

ð0; 0:393; 0Þ: Table 2 gives the basis set. The number of
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Fig. 6. From top to bottom: orbital weight of the Cu-3dx2	y2 orbital,

the O-2ps orbitals, the O-2pp and the O-2pz orbitals.

Fig. 7. Unit cell of antiferromagnetic Sr2CuO2Cl2; Cu1 spin up, Cu2
spin down.
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Fourier components was 1000 per atom and the k-mesh
subdivision was ð12; 12; 12Þ: Scalar relativistic calcula-
tions are performed. For the sake of comparison the
stacking direction is further on denoted z and the
cuprate plane as the x; y-plane. The symmetry points are
chosen corresponding to the scheme described in the
previous subsection.
The site projected copper 3d moment of the LSDAþ

U result is 0:758mB and the total copper spin moment is
0:748mB: In Fig. 8 the orbital weights for the relevant
bands are shown. The situation is rather similar to that
of CaCuO2; so only the differences are pointed out.
The ‘‘Zhang–Rice’’ band is slightly higher and

touches the valence band edge at X and R. The
intersecting band is correspondingly lower at the line
M–A, as a consequence the width of the upper valence
band is about 1:5 eV and the fading of the O-2ps

character on the lines X–M and R–A is less pronounced,
a reduction of about 50 p.c. remains. The z-dispersion of
the O-2pp band on the line G-Z has gone as there are no
Ca-3d states present for hybridization. There is a
marked 2D character of the compound.
The quasiparticle low-energy dispersion measured by

ARPES (single hole excitation) is shown in Fig. 9. A
detailed discussion is found in [27,28]. The left part of
the experimental spectra (from (0,0) to ðp2; p2Þ) compares
nicely with the O-2ps dominated LSDAþ U band on
the line G	X (second panel of Fig. 8) and the right part
(from ðp

2
; p
2
Þ to ð0; pÞ) with the same LSDAþ U band on

the line X–M. Even the reported fading ARPES
intensity when going from X towards M (see also [29])
agrees with the fading O-2ps projection of that band.
Nevertheless, the experimental band width is smaller by
a factor of about two to three and the situation on the
line G	M is less clear although the comparison of only
the O-2ps projected bands (second panel of Fig. 8, cf.
the discussion of models above) to model results
contained in Fig. 9 is not so bad. After all, LSDAþ U

accounts for electron correlations still rather grossly.

3.3. Bi2Sr2CaCu2O8

The bilayer compound Bi2Sr2CaCu2O8 has a double
layer of cuprate planes separated by block layers. The

block layer consists of two BiSrO2 layers between which
crystals cleave equally easily as in the previous case and
also favor the material for photoemission. Adjacent
double layers are again shifted horizontally by a shift
vector ð12; 12; 0Þ relative to each other, which produces a
body centered tetragonal non-magnetic cell. The hypo-
thetic AFM cell again is assumed base centered
orthorhombic.
The cell parameters are again given in the c-base

centered setting, resulting in the b-axis being the
stacking direction. The space group is Cmmm (65).
The cell parameters are da ¼ 3:817 Å and 2dc ¼ 30:6 Å:
The lattice constants of the AFM cell are a0 ¼ c0 ¼ffiffiffi
2

p
da; b0 ¼ 2dc: The atom positions are Ca ð0; 1

4
; 1
4
Þ; Sr

ð0; 0:3597; 1
4
Þ; Sr ð0; 0:1403; 1

4
Þ; Bi ð0;	0:4478; 1

4
Þ; Bi
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Table 2

Basis set for Sr2CuO2Cl2

Atom Core Valence

Cu 1s 2s 2p 3sð	1Þ 3pð	1Þ 4sð1:2300Þ
4pð1:1199Þ 3dð1:3148Þ

O 1s 2sð1:2580Þ 2pð1:2377Þ 3dð1:1162Þ
Cl 1s 2s 2p 3sð1:1518Þ 3pð1:1338Þ 3dð1:0852Þ
Sr 1s 2s 2p 3s 3p 3d 4sð	1Þ 4pð	1Þ 5sð1:1360Þ

5pð1:0816Þ 4dð1:1503Þ

Compression parameter for valence orbitals in parentheses.
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Fig. 8. Same as Fig. 6 for Sr2CuO2Cl2:
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ð0;	0:0522; 1
4
Þ; Cu ð0;	0:3040; 1

4
Þ; Cu ð0;	0:1960; 1

4
Þ; O1

ð	1
4
; 0:1960; 0Þ; O2 ð0;	0:1250; 14Þ; O2 ð0;	0:3750; 14Þ; O3

ð0; 0:0450; 1
4
Þ and O3 ð0; 0:4550; 14Þ . The two Sr, Bi, O2;

O3 and Cu atoms are equivalent in the non-magnetic
cell. The O1 atom is that of the cuprate plane. The two
Cu spins are antiferromagnetically ordered in the AFM
cell. Table 3 gives the basis set. The number of Fourier
components was 500 per atom and the k-mesh subdivi-
sion was ð8; 8; 8Þ: Again, scalar relativistic calculations
were performed and the symmetry points in k-space
are chosen corresponding to the scheme described in
Section 3.2.
For this material both the LSDA and LSDAþ U

yield a metallic ground state with Cu–O bands and Bi
bands crossing the Fermi level. While the LSDA results
in a non-magnetic solution, the LSDAþ U calculation
yields a stable AFM state. The site projected copper 3d
moment is 0:696mB and the total copper spin moment is
0:684mB:
Fig. 10 shows both the LSDA and LSDAþ U bands

of Bi2Sr2CaCu2O8 close to the Fermi level. For a better
orientation in the band character the Cu-3dx2	y2

projected bands are also shown. Note that the LSDAþ
U results on the right panels have twice as many bands
as the LSDA results on the left panels due to the AFM
order of the former ground state. The bands crossing the
Fermi level and not seen in the lower panels are Bi bands
(more precisely BiO bands hybridized with orbitals of
the block layer oxygen).
The splitting of the Cu-3dx2	y2 projected LSDA bands

crossing the Fermi level on the line X–M (R–A) is the
much discussed bilayer splitting between bonding and
antibonding combinations of the CuO states in both
CuO2 layers of the bilayer [28]. The coupling of those
states is mainly due to a small hybridization with Cu-4s
states, and this part of the coupling has k2x 	 k2y
symmetry. Hence, the splitting is maximum
ðB0:25 eVÞ at point M (A) and nearly zero at point X
(R) although a very small splitting remains there due to
a small direct coupling. It is readily seen by a simple
symmetry argument that in the AFM state this splitting
must be zero on the whole line X–M (R–A), if spin-orbit
coupling is neglected. Accordingly all bands on the right
panels of Fig. 10 are twofold degenerate on these lines
and do not show a bilayer splitting there. This only
develops away from these lines, for instance in the X-G
and M-G directions. However, the Cu-3dx2	y2 projected
LSDAþ U bands on the right lower panel show around
M and A another splitting of approximately the same
magnitude which is due to the crossing of another
oxygen band. This point has never been considered in
the literature to date.
Note also that the non-magnetic structure of the left

panels has a larger Brillouin zone so that the rising band
from G to X continues to rise from X ¼ ð1

2
; 1
2
; 0Þ to the

Brillouin zone corner (1,1,0), whereas the AFM
structure of the right panels has a charge transfer gap
(dominated by U and hence much larger than the
exchange splitting) at X, which now lies on the Brillouin
zone boundary, and the conduction band has its
maximum at X. On the other hand, the band pair close
to the Fermi level on the line G	 Z on the upper right
panel is on the line (1,1,z) in the non-magnetic state and
not shown on the upper left panel. To illustrate the
charge transfer gap, the LSDAþ U band structure
projected on Cu-3dx2	y2 is shown once more in Fig. 11
for a larger energy window.
Experimentally, the oxygen in the block layers of

Bi2Sr2CaCuO8 is volatile and its stoichiometry is
governed by thermodynamics. Moreover, the geometry
of the block layer is distorted in a disordered way
compared to the ideal structure used in the calculation.
In the recent, highest resolution photoemission spectra
[28], Fermi surface pockets around point M which
should be present due to the Bi bands in both the LSDA
and LSDAþ U results are not seen. Hence, one could
assume that they are pushed away from the Fermi level
(together with the oxygen bands on G-Z) by a distortion
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Fig. 9. Energy dispersion of quasiparticles for Sr2CuO2Cl2 [27]. The

energy zero is put at the top of the band, about 0:7 eV below Fermi

level. Open symbols: experimental data; solid circles: self-consistent

Born approximation for a t–t0–t00–J model; solid line: tight-binding fit;
dashed: t–J model; dotted: spinon model dispersion.

Table 3

Basis set for Bi2Sr2CaCu2O8

Atom Core Valence

Ca 1s 2s 2p 3sð	1Þ 3pð	1Þ 4sð1:1298Þ
4pð1:1210Þ 3dð1:2286Þ

Sr 1s 2s 2p 3s 3p 3d 4sð	1Þ 4pð	1Þ 5sð1:1239Þ
5pð1:0717Þ 4dð1:1435Þ

Bi 1s 2s 2p 3s 3p 3d

4s 4p 4d 4f

5sð	1Þ 5pð	1Þ 6sð1:3570Þ
6pð1:2922Þ 5dð1:4752Þ

Cu 1s 2s 2p 3sð	1Þ 3pð	1Þ 4sð1:2229Þ
4pð1:1549Þ 3dð1:3060Þ

O1 1s 2sð1:2464Þ 2pð1:2177Þ 3dð	1Þ
O2 1s 2sð1:1766Þ 2pð1:1895Þ 3dð	1Þ
O3 1s 2sð1:0683Þ 2pð1:0951Þ 3dð	1Þ

Compression parameter for valence orbitals in parentheses.
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potential. Correspondingly, the Fermi level would be
lowered to ensure the electron count. This would be a
big problem for the LSDA band structure where not
only the antibonding bilayer split band would have an
electron Fermi surface closed around G but also the
bonding one, both in contradiction to what is seen in
photoemission. The LSDAþ U band structure (lower
right panel of Fig. 10) on the contrary would be in
rather good agreement with photoemission if one wipes
out the down folded bands of the AFM order which is
not found in experiment. (The material cannot be
reduced down to undoped CuO2	2 planes.)
There would be another stark difference to what is

discussed in the literature with respect to the bilayer
splitting: If the band splitting around M and observed in
photoemission would be a bilayer splitting, one should
expect it to be strongly reduced when reducing the
doping level to an underdoped superconductor which is

regarded to develop strong AFM correlations (also seen
in neutron scattering). It should be reduced to zero
where AFM order sets in. The splitting of the LSDAþ
U bands of different origin on the contrary is to be
expected largely independent of antiferromagnetic order
and hence on doping.

3.4. Implications on magnetic interactions

Magnetic couplings may grossly be obtained from
total energy differences of LSDAþ U results for
ferromagnetic and antiferromagnetic order; in more
detail they may be obtained from calculated energies of
spin spiral states [30].
For a more detailed understanding of their physics, a

tight-binding model of the kind of Emery’s model
should be extracted from the LSDAþ U results, which
then may be down-mapped to a kind of a t–J model.
For a hypothetic ferromagnetic order (assumed for the
sake of simplicity) such a tight-binding model was
derived in Ref. [24].
One main conclusion from the present orbital analysis

is that in a large part of the Brillouin zone there is a
strong hybridization of O-2ps with O-2pp orbitals in
bands hybridized with the Cu-3dx2	y2 orbital. Further-
more, the O-2pp bands are in energetic competition with
the bands forming the Zhang–Rice state, if additional
holes are doped. Hence, the O-2pp orbitals must be
included in the Emery model in order to correctly
describe the t-terms which determine the magnetic
coupling.
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Fig. 10. Bi2Sr2CaCu2O8: left: LSDA band structure and Cu-3dx2	y2 orbital weights, right: LSDA+UAMF band structure and weights.
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Fig. 11. Bi2Sr2CaCu2O8: LSDAþ UAMF Cu-3dx2	y2 orbital weights.
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In CaCuO2 there is a sizable dispersion of the in-plane
O-2pp bands in z-direction mediated by some hybridiza-
tion with Ca-3dx2	y2 orbitals. This is in accordance with
the experimental finding that CaCuO2 has the highest
Néel temperature, TN ¼ 540 K; of all layered cuprates
indicating 3D magnetism [20,31]. For a survey of the
magnetic properties of cuprates see Ref. [32].
By contrast, in Sr2CuO2Cl2 there is no dispersion of

the corresponding bands in z-direction due to the Sr2Cl2
buffer layers. There is only dipole–dipole coupling of
the planes, compatible with the experimental findings,
TN ¼ 256 K [33].

4. Conclusions

The LSDAþ U approach is shown to fit perfectly in
the frame of DFT by Hohenberg and Kohn for the
electronic ground state, provided the theory can be
closed by linking the U-value to the variational
quantities, the KS orbitals and orbital occupation
numbers (which explicit link is yet to be rendered). On
the other hand, the LSDAþ U potential is also widely
understood as an approximation to the electron self-
energy (first step towards an LSDA+dynamical mean-
field theory). There is hope that in this way like in the
situation of weakly correlated systems it provides again
a tool to obtain a rather accurate ground state and a
reasonable approximation to the quasi-particle spec-
trum (band structure) in a single run from only one set
of equations. To pursue this goal, in the first part of the
present paper an attempt was made to present the
structure of the LSDAþ U theory as clearly as possible.
Application to several typical planar cuprate struc-

tures and comparison to experimental data of the
isolating electronic state and the magnetic state as well
as of quasiparticle spectra probed by photoemission
seems to support this expectation. On the other hand, it
revealed a number of new aspects in the physics of the
electronic structure of cuprates. Notably, the sufficient
completeness of most model Hamiltonians in use must
be questioned, at least in connection with the dimen-
sionality and details of magnetic couplings, and the
so-called bilayer splitting of the band structure of
Bi2Sr2CaCu2O8 should be reanalyzed.
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L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51 (1983) 1888–1891;

W. Kohn, Phys. Rev. B 33 (1986) 4331–4333.

[11] V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44 (1991)

943–954.

[12] V.I. Anisimov, et al., Phys. Rev. B 48 (16) (1993) 929–934.

[13] M.T. Czy’zyk, G.A. Sawatzky, Phys. Rev. B 49 (1994)

14211–14228.

[14] V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.:

Condens. Matter 9 (1997) 767–808.

[15] A.B. Shick, A.I. Liechtenstein, W.E. Pickett, Phys. Rev. B 60

(1999) 10763–10769.

[16] K. Koepernik, H. Eschrig, Phys. Rev. B 59 (1999) 1743–1757.

[17] A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52

(1995) R5467–R5470.

[18] Access to FPLO exists under ‘http://www.ifw-dresden.de/fplo’

[19] P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048–5079.

[20] D. Vaknin, et al., Phys. Rev. B 39 (1989) 9122–9125.

[21] V.J. Emery, Phys. Rev. Lett. 58 (1987) 2794–2797.

[22] F.C. Zhang, T.M. Rice, Phys. Rev. B 37 (1988) 3759–3761.

[23] J.J.M. Pothuizen, et al., Phys. Rev. Lett. 78 (1997) 717–719.

[24] R. Hayn, et al., Phys. Rev. B 60 (1999) 645–658.

[25] J. Fink, et al., J. Electron Spectrosc. Relat. Phenom. 66 (1994)

395–452.

[26] L.L. Miller, et al., Phys. Rev. B 41 (1990) 1921–1925.

[27] T. Tohyama, S. Maekawa, Supercond. Sci. Technol. 13 (2000)

R17–R32.

[28] A. Damascelli, Z.-X. Shen, Z. Hussain, Rev. Mod. Phys. 75

(2003) 473.

[29] F. Ronning et al., cond-mat/0209651, 2002.

[30] A.N. Yaresko, Phys. Rev. B 65 (2002) 115111-1–115111-7.

[31] R. Pozzi, et al., Phys. Rev. B 56 (1997) 759–765.

[32] D.C. Johnston, in: K.H.J. Buschow (Ed.), Handbook of Magnetic

Materials, Vol. 10, Elsevier, Amsterdam, 1997, pp. 1–237

(Chapter 1).

[33] M. Greven, et al., Phys. Rev. Lett. 72 (1994) 1096–1099.

ARTICLE IN PRESS
H. Eschrig et al. / Journal of Solid State Chemistry 176 (2003) 482–495 495

&ast;http://www.ifw-dresden.de/fplo

	Density functional application to strongly correlated electron systems
	Introduction
	The FPLO implementation of the LSDA+U approach
	Correlated orbitals
	The orbital occupation matrix
	The orbital polarization LSDA+U functional
	The ’atomic limit’ LSDA+U functional
	The Kohn-Sham Hamiltonian matrix element and the total energy

	Applications to cuprates
	CaCuO2
	Sr2CuO2Cl2
	Bi2Sr2CaCu2O8
	Implications on magnetic interactions

	Conclusions
	Acknowledgements
	References


